Open Access
ARTICLE
Emerging Frontiers in Computer Vision: A Critical Analysis of Deep Learning Techniques and Their Real-World Applications
Issue Vol. 2 No. 02 (2025): Volume 02 Issue 02 --- Section Articles
Abstract
Deep learning has become the cornerstone of modern computer vision, fundamentally transforming how machines perceive and interpret the visual world. This article presents a critical review of the key deep learning techniques that have driven this revolution. We trace the evolution of foundational concepts, from early neural networks to the sophisticated convolutional neural network (CNN) architectures that dominate the field today. The article is structured to provide a comprehensive overview, beginning with an introduction to the core concepts and historical context of deep learning in computer vision. We then delve into the methodologies, systematically examining influential architectures and techniques for major computer vision tasks, including image classification, object detection, semantic segmentation, and image restoration. Subsequently, we evaluate the performance and results of these methods, highlighting their groundbreaking impact on various application scenarios, from medical imaging to autonomous systems. Finally, we discuss the broader implications, current challenges such as the creation of deepfakes, and promising future directions for research and development. By synthesizing a wide array of seminal and contemporary works, this review offers a detailed landscape of the field, providing valuable insights for both new and experienced researchers.
Keywords
References
[1] Adamopoulou, E., & Moussiades, L. (2020). Chatbots: History, technology, and applications. Machine Learning with Applications, 2, 100006.
[2] Agarwal, S., Farid, H., El-Gaaly, T., & Lim, S. N. (2020). Detecting deep-fake videos from appearance and behavior. Proceedings of the 2020 IEEE International Workshop on Information Forensics and Security (WIFS), 1–6.
[3] Agarwal, S., Farid, H., Fried, O., & Agrawala, M. (2020). Detecting deep-fake videos from phoneme-viseme mismatches. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2814–2822.
[4] Al-Shabandar, R., Jaddoa, A., Liatsis, P., & Hussain, A. J. (2021). A deep gated recurrent neural network for petroleum production forecasting. Machine Learning with Applications, 3, 100013.
[5] Altan, A., Karasu, S., & Zio, E. (2021). A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer. Applied Soft Computing, 100, 106996.
[6] Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 53.
[7] Bloomberg Quicktake (2018). It’s getting harder to spot a deep fake video. Retrieved from https://www.youtube.com/watch?v=gLoI9hAX9dw
[8] Bochkovskiy, A., Wang, C. Y., & Liao, H.-Y. M. (2020). YOLOV4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.
[9] Burger, H. C., Schuler, C. J., & Harmeling, S. (2012). Image denoising: Can plain neural networks compete with BM3D?. Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2392–2399.
[10] Cai, Z., Fan, Q., Feris, R. S., & Vasconcelos, N. (2016). A unified multiscale deep convolutional neural network for fast object detection. Proceedings of the 14th European Conference on Computer Vision (ECCV), 354–370.
[11] Chai, J., & Li, A. (2019). Deep learning in natural language processing: A state-of-the-art survey. Proceedings of the 2019 International Conference on Machine Learning and Cybernetics (ICMLC), 1–6.
[12] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2015). Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv preprint arXiv:1412.7062.
[13] Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder–decoder with atrous separable convolution for semantic image segmentation. Proceedings of the 15th European Conference on Computer Vision (ECCV), 801–818.
[14] Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1251–1258.
[15] Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16(8), 2080–2095.
[16] Dai, J., Li, Y., He, K., & Sun, J. (2016). R-FCN: Object detection via region-based fully convolutional networks. Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS), 379–387.
[17] Dambrogio, J., Ghassaei, A., Smith, D. S., Jackson, H., Demaine, M. L., Davis, G., Mills, D., Ahrendt, R., Akkerman, N., van der Linden, D., & Demaine, E. D. (2021). Unlocking history through automated virtual unfolding of sealed documents imaged by X-ray microtomography. Nature Communications, 12(1), 1184.
[18] Dong, C., Loy, C. C., He, K., & Tang, X. (2016). Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 295–307.
[19] Dosovitskiy, A., & Brox, T. (2016). Inverting visual representations with convolutional networks. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4829–4837.
[20] Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12), 3736–3745.
[21] Fu, C.-Y., Liu, W., Ranga, A., Tyagi, A., & Berg, A. C. (2017). DSSD: Deconvolutional single shot detector. arXiv preprint arXiv:1701.06659.
[22] Gando, G., Yamada, T., Sato, H., Oyama, S., & Kurihara, M. (2016). Fine-tuning deep convolutional neural networks for distinguishing illustrations from photographs. Expert Systems with Applications, 66, 295–301.
[23] Girshick, R. (2015). Fast r-cnn. Proceedings of the IEEE International Conference on Computer Vision (ICCV), 1440–1448.
[24] Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 580–587.
[25] Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual understanding: A review. Neurocomputing, 187, 27–48.
[26] Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., & Xu, C. (2020). GhostNet: More features from cheap operations. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 1577–1586.
[27] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), 2961–2969.
[28] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(9), 1904–1916.
[29] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition resnet. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778.
[30] Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q. V., & Adam, H. (2019). Searching for MobileNetV3. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 1314–1324.
[31] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
[32] Hsu, C.-C., Zhuang, Y.-X., & Lee, C.-Y. (2020). Deep fake image detection based on pairwise learning. Applied Sciences, 10(1), 370.
[33] Huang, J., Chai, J., & Cho, S. (2020). Deep learning in finance and banking: A literature review and classification. Frontiers of Business Research in China, 14, 1–24.
[34] Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen, M., Lee, H., Ngiam, J., Le, Q. V., & Wu, Y. (2019). Gpipe: Efficient training of giant neural networks using pipeline parallelism. Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS), 32, 103-112.
[35] Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2261–2269.
[36] Kaggle (2019). Deepfake detection challenge | kaggle. Retrieved from https://www.kaggle.com/c/deepfake-detection-challenge
[37] Kim, S. Y., Oh, J., & Kim, M. (2020). Jsi-gan: Gan-based joint super-resolution and inverse tone-mapping with pixel-wise task-specific filters for uhd hdr video. Proceedings of the AAAI Conference on Artificial Intelligence, 34(07), 11287–11295.
[38] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS), 1, 1097-1105.
[39] Krull, A., Buchholz, T.-O., & Jug, F. (2019). Noise2Void—LEarning denoising from single noisy images. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2124–2132.
[40] Kumar, A., Walia, G. S., & Sharma, K. (2020). Recent trends in multicue based visual tracking: A review. Expert Systems with Applications, 162, 113711.
[41] Lai, W.-S., Huang, J. B., Ahuja, N., & Yang, M. H. (2017). Deep laplacian pyramid networks for fast and accurate super-resolution. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5835–5843.
[42] Lapuschkin, S., Binder, A., Montavon, G., Muller, K.-R., & Samek, W. (2016). The LRP toolbox for artificial neural networks. Journal of Machine Learning Research, 17(114), 1–5.
[43] Law, H., & Deng, J. (2018). CornerNet: Detecting objects as paired keypoints. Proceedings of the 15th European Conference on Computer Vision (ECCV), 11218, 734–750.
[44] Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., & Wang, Z. (2017). Photo-realistic single image super-resolution using a generative adversarial network. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 105–114.
[45] Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M., & Aila, T. (2018). Noise2Noise: Learning image restoration without clean data. Proceedings of the 35th International Conference on Machine Learning (ICML), 80, 2965-2974.
[46] Li, B., Yan, J., Wu, W., Zhu, Z., & Hu, X. (2018). High performance visual tracking with siamese region proposal network. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 8971–8980.
[47] Lienhart, R., & Maydt, J. (2002). An extended set of haar-like features for rapid object detection. Proceedings of the International Conference on Image Processing, 1, I–900–I–903.
[48] Lin, M., Chen, Q., & Yan, S. (2014). Network in network. Proceedings of the 2014 International Conference on Learning Representations (ICLR).
[49] Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 936–944.
[50] Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), 2999–3007.
[51] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). SSD: Single shot multibox detector. Proceedings of the European Conference on Computer Vision (ECCV), 9905, 21–37.
[52] Long, X., Deng, K., Wang, G., Zhang, Y., Dang, Q., Gao, Y., Shen, H., Ren, J., Han, S., Ding, E., & Wen, S. (2020). PP-YOLO: An effective and efficient implementation of object detector. arXiv preprint arXiv:2007.12099.
[53] Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3431–3440.
[54] Lukezic, A., Matas, J., & Kristan, M. (2020). D3S – a discriminative single shot segmentation tracker. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 7131–7140.
[55] Mehrotra, R., Ansari, M. A., Agrawal, R., & Anand, R. S. (2020). A transfer learning approach for AI-based classification of brain tumors. Machine Learning with Applications, 2, 100003.
[56] Milletari, F., Navab, N., & Ahmadi, S.-A. (2016). V-NEt: Fully convolutional neural networks for volumetric medical image segmentation. Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), 565–571.
[57] Muzammel, M., Salam, H., Hoffmann, Y., Chetouani, M., & Othmani, A. (2020). AudVowelConsNet: A phoneme-level based deep CNN architecture for clinical depression diagnosis. Machine Learning with Applications, 2, 100005.
[58] Noh, H., Hong, S., & Han, B. (2015). Learning deconvolution network for semantic segmentation. Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), 1520–1528.
[59] Pinheiro, P. O., Lin, T.-Y., Collobert, R., & Dollàr, P. (2016). Learning to refine object segments. ECCV 2016, 75–91.
[60] Qi, Y., Zhang, S., Qin, L., Yao, H., Huang, Q., Lim, J., & Yang, M. H. (2016). Hedged deep tracking. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4303–4311.
[61] Radosavovic, I., Kosaraju, R. P., Girshick, R., He, K., & Dollár, P. (2020). Designing network design spaces. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10425–10433.
[62] Rai, H. M., & Chatterjee, K. (2020). Detection of brain abnormality by a novel lu-net deep neural CNN model from MR images. Machine Learning with Applications, 2, 100004.
[63] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788.
[64] Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6517–6525.
[65] Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.
[66] Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137-1149.
[67] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, 234–241.
[68] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4510–4520.
[69] Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. Proceedings of the 3rd International Conference on Learning Representations (ICLR).
[70] Song, Y., Ma, C., Wu, X., Gong, L., Bao, L., Zuo, W., Shen, C., Lau, R. W., & Yang, M. H. (2018). Vital: Visual tracking via adversarial learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 8990–8999.
[71] Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2017). Inception-v4, inception-resnet and the impact of residual connections on learning. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 4278–4284.
[72] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1–9.
[73] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2818–2826.
[74] Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. Proceedings of the 36th International Conference on Machine Learning (ICML), 97, 6105-6114.
[75] Tian, Z., Shen, C., Chen, H., & He, T. (2019). Fcos: Fully convolutional one-stage object detection. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 9626–9635.
[76] Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2018). Deep image prior. International Journal of Computer Vision, 128(7), 1867–1888.
[77] Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR).
[78] Walia, G. S., & Kapoor, R. (2016). Recent advances on multicue object tracking: A survey. The Artificial Intelligence Review, 46(1), 1–39.
[79] Wang, L., Kim, T. K., & Yoon, K. J. (2020). Eventsr: From asynchronous events to image reconstruction, restoration, and super-resolution via end-to-end adversarial learning. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 8312–8322.
[80] Wang, N., Li, S., Gupta, A., & Yeung, D. Y. (2015). Transferring rich feature hierarchies for robust visual tracking. arXiv preprint arXiv:1501.04587.
[81] Wang, L., Liu, T., Wang, G., Chan, K. L., & Yang, Q. (2015). Video tracking using learned hierarchical features. IEEE Transactions on Image Processing, 24(4), 1424–1435.
[82] Wang, N., & Yeung, D. Y. (2013). Learning a deep compact image representation for visual Tracking. Proceedings of the 27th Annual Conference on Neural Information Processing Systems, 1, 809-817.
[83] Xie, J., Xu, L., & Chen, E. (2012). Image denoising and inpainting with deep neural networks. Advances in Neural Information Processing Systems, 25, 341–349.
[84] Xu, T., Feng, Z.-H., Wu, X.-J., & Kittler, J. (2019). Joint group feature selection and discriminative filter learning for robust visual object tracking. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 7949–7959.
[85] Xu, S., Wang, J., Shou, W., Ngo, T., Sadick, A.-M., & Wang, X. (2020). Computer vision techniques in construction: A critical review. Archives of Computational Methods in Engineering.
[86] Yang, Z., Liu, S., Hu, H., Wang, L., & Lin, S. (2019). RepPoints: Point set representation for object detection. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 9656–9665.
[87] Ye, L., Liu, Z., & Wang, Y. (2020). Dual convolutional LSTM network for referring image segmentation. IEEE Transactions on Multimedia, 22(12), 3224–3235.
[88] Young, A. L., & Quan-Haase, A. (2013). Privacy protection strategies on facebook: The internet privacy paradox revisited. Information, Communication & Society, 16(4), 479–500.
[89] Yun, S., Choi, J., Yoo, Y., Yun, K., & Choi, J. Y. (2017). Action-decision networks for visual tracking with deep reinforcement learning. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1349–1358.
[90] Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. Proceedings of the 13th European Conference on Computer Vision (ECCV), 8689, 818–833.
[91] Zhang, C., Lin, G., Liu, F., Yao, R., & Shen, C. (2019). Canet: Class-agnostic segmentation networks with iterative refinement and attentive few-shot learning. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 5212–5221.
[92] Zhang, K., Liu, Q., Wu, Y., & Yang, M. H. (2016). Robust visual tracking via convolutional networks without training. IEEE Transactions on Image Processing, 25(4), 1779–1792.
[93] Zhao, Z., Jiao, L., Zhao, J., Gu, J., & Zhao, J. (2017). Discriminant deep belief network for high-resolution SAR image classification. Pattern Recognition, 61, 686–701.
[94] Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., & Liang, J. (2020). Unet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Transactions on Medical Imaging, 39(6), 1856–1867.
[95] Zhou, X., Wang, D., & Krähenbühl, P. (2019). Objects as points. arXiv preprint arXiv:1904.07850.
Open Access Journal
Submit a Paper
Propose a Special lssue
psdf