ejeai Open Access Journal

European Journal of Emerging Artificial Intelligence

eISSN: Applied
Publication Frequency : 2 Issues per year.

  • Peer Reviewed & International Journal
Table of Content
Issues (Year-wise)
Loading…
✓ Article Published

Open Access iconOpen Access

ARTICLE

ADVANCING AFRICAN COMPUTER VISION: PROGRESS, CHALLENGES, AND PATHWAYS FOR GROWTH

1 Department of Electrical and Computer Engineering, University of Khartoum, Sudan
2 School of Computer Science and Applied Mathematics, University of the Witwatersrand, South Africa

Citations: Loading…
ABSTRACT VIEWS: 32   |   FILE VIEWS: 15   |   PDF: 15   HTML: 0   OTHER: 0   |   TOTAL: 47
Views + Downloads (Last 90 days)
Cumulative % included

Abstract

Computer Vision (CV), a rapidly evolving field within Artificial Intelligence (AI), holds immense potential for addressing a wide array of societal and economic challenges globally. While a significant portion of global CV research is concentrated in a few established regions, there is a burgeoning and distinct landscape of CV innovation emerging across the African continent. This comprehensive article provides an in-depth overview of the current state of computer vision research in Africa, strictly adhering to the IMRaD (Introduction, Methods, Results, and Discussion) format. It meticulously identifies key research areas, highlights unique contributions, explores the multifaceted challenges faced by researchers, and discusses promising opportunities for future growth and collaboration. By critically examining recent scholarly work and survey insights, this paper aims to illuminate the dynamic trajectory of computer vision research in Africa and underscore its growing significance in the global scientific and ethical discourse on AI. The findings reveal a problem-driven research agenda, a critical engagement with data and ethical considerations, and a strong emphasis on fostering intra-African and international collaborations to build sustainable research capacity.


Keywords

Computer Vision, Artificial Intelligence, Africa, Research Trends

References

1. Abdilla, A., Arista, N., Baker, K., Benesiinaabandan, S., Brown, M., Cheung, M., Coleman, M., Cordes, A., Davison, J., Duncan, K., Garzon, S., Harrell, D. F., Jones, P.-L., Kealiikanakaoleohaililani, K., Kelleher, M., Kite, S., Lagon, O., Leigh, J., Levesque, M., Lewis, J. E., Mahelona, K., Moses, C., Nahuewai, Isaac (’Ika’aka), Noe, K., Olson, D., Parker Jones, ’ ̄ Oiwi, Running Wolf, C., Running Wolf, M., Silva, M., Fragnito, S., & Whaanga, H. (2020). Indigenous protocol and artificial intelligence position paper.

2. Abdulmumin, I., Dash, S. R., Dawud, M. A., Parida, S., Muhammad, S., Ahmad, I. S., Panda, S., Bojar, O., Galadanci, B. S., & Bello, B. S. (2022). Hausa visual genome: A dataset for multi-modal English to Hausa machine translation. In Calzolari, N., B ́echet, F., Blache, P., Choukri, K., Cieri, C., Declerck, T., Goggi, S., Isahara, H., Maegaard, B., Mariani, J., Mazo, H., Odijk, J., & Piperidis, S. (Eds.), Proceedings of the Thirteenth Language Resources and Evaluation Conference, pp. 6471–6479 Marseille, France. European Language Resources Association.

3. Afifi, M. (2019). 11k hands: Gender recognition and biometric identification using a large dataset of hand images. Multimedia Tools and Applications, 78, 20835–20854.

4. Amraoui, K. E., Lghoul, M., Ezzaki, A., Masmoudi, L., Hadri, M., Elbelrhiti, H., & Simo, A. A. (2022). Avo-airdb: An avocado uav database for agricultural image segmentation and classification. Data in Brief, 45, 108738.

5. Ayachi, R., Afif, M., Said, Y., & Atri, M. (2020). Traffic signs detection for real-world application of an advanced driving assisting system using deep learning. Neural Processing Letters, 51(1), 837–851.

6. Bashkirova, D., Abdelfattah, M., Zhu, Z., Akl, J., Alladkani, F., Hu, P., Ablavsky, V., Calli, B., Bargal, S. A., & Saenko, K. (2022). Zerowaste dataset: towards deformable object segmentation in cluttered scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21147–21157.

7. Birhane, A., & Guest, O. (2020). Towards decolonising computational sciences. arXiv preprint arXiv:2009.14258, 1(1), non Bondi, E., Xu, L., Acosta-Navas, D., & Killian, J. A. (2021). Envisioning communities: a participatory approach towards ai for social good. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pp. 425–436.

8. Bondi, E., Xu, L., Acosta-Navas, D., & Killian, J. A. (2021). Envisioning communities: a participatory approach towards ai for social good. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pp. 425–436.

9. Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. In Proceedings of the Conference on Fairness, Accountability and Transparency, pp. 77–91. PMLR.

10. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877–1901.

11. Chemura, A., van Duren, I., & van Leeuwen, L. M. (2015). Determination of the age of oil palm from crown projection area detected from worldview-2 multispectral remote sensing data: The case of ejisu-juaben district, ghana. ISPRS journal of photogrammetry and remote sensing, 100, 118–127.

12. Chen, H., & Deng, Z. (2020). Bibliometric analysis of the application of convolutional neural network in computer vision. IEEE Access, 8, 155417–155428.

13. Currin, C. B., Asiedu, M. N., Fourie, C., Rosman, B., Turki, H., Tonja, A. L., Abbott, J., Ajala, M., Adedayo, S. A., Emezue, C. C., & Machangara, D. (2023). A framework for grassroots research collaboration in machine learning and global health. In 2023 ICLR First Workshop on Machine Learning & Global Health.

14. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255.

15. El-Sherif, E. A., & Abdelazeem, S. (2007). A two-stage system for arabic handwritten digit recognition tested on a new large database. In Artificial intelligence and pattern recognition, pp. 237–242.

16. Elanwar, R., Qin, W., Betke, M., & Wijaya, D. (2021). Extracting text from scanned arabic books: a large-scale benchmark dataset and a fine-tuned faster-r-cnn model. International Journal on Document Analysis and Recognition (IJDAR), 24(4), 349–362.

17. Etori, N., Dawson, M., & Gini, M. (2024). Double-edged sword: Navigating ai opportunities and the risk of digital colonization in africa.

18. Fielding, E., Nyirenda, C. N., & Vaccari, M. (2022). The classification of optical galaxy morphology using unsupervised learning techniques. In Prceedings of the International Conference on Electrical, Computer and Energy Technologies (ICECET), pp. 1–6.

19. Gaillard, J., & Tullberg, A. F. (2001). Questionnaire survey of african scientists.

20. Grauman, K., Westbury, A., Byrne, E., Chavis, Z., Furnari, A., Girdhar, R., Hamburger, J., Jiang, H., Liu, M., Liu, X., et al. (2022). Ego4D: Around the world in 3,000 hours of egocentric video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18995–19012.

21. Guleid, F. H., Oyando, R., Kabia, E., Mumbi, A., Akech, S., & Barasa, E. (2021). A bibliometric analysis of covid-19 research in africa. BMJ Global Health, 6(5), e005690.

22. Hengl, T., De Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B., Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars, J. G., Walsh, M. G., et al. (2014). Soil-grids1km—global soil information based on automated mapping. PloS one, 9(8), e105992.

23. Kinyanjui, N. M., Odonga, T., Cintas, C., Codella, N. C., Panda, R., Sattigeri, P., & Varshney, K. R. (2020). Fairness of classifiers across skin tones in dermatology. In Proceedings of the Medical Image Computing and Computer Assisted Intervention, pp. 320–329. Springer.

24. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90.

25. Lelong, C., & Herimandimby, H. (2022). Land use/land cover map of vavatenina region (madagascar) produced by object-based analysis of very high spatial resolution satellite images and geospatial reference data. Data in Brief, 44, 108517.

26. Manescu, P., Bendkowski, C., Claveau, R., Elmi, M., Brown, B. J., Pawar, V., Shaw, M. J., & Fernandez-Reyes, D. (2020). A weakly supervised deep learning approach for detecting malaria and sickle cells in blood films. In Proceedings of the Medical Image Computing and Computer Assisted Intervention, pp. 226–235. Springer.

27. Mbondji, P. E., Kebede, D., Zielinski, C., Kouvividila, W., Sanou, I., & Lusamba-Dikassa, P.-S. (2014). Overview of national health research systems in sub-saharan africa: results of a questionnaire-based survey. Journal of the Royal Society of Medicine, 107(1 suppl), 46–54.

28. Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams engineering journal, 5(4), 1093–1113.

29. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6), 1–35.

30. Mhlambi, S. (2020). From rationality to relationality: ubuntu as an ethical and human rights framework for artificial intelligence governance. Carr Center for Human Rights Policy Discussion Paper Series, 9.

31. Mohamed, S., Png, M.-T., & Isaac, W. (2020). Decolonial ai: Decolonial theory as sociotechnical foresight in artificial intelligence. Philosophy & Technology, 33, 659–684.

32. Muhammad, L., Algehyne, E. A., Usman, S. S., Mohammed, I., Abdulkadir, A., Jibrin, M. B., & Malgwi, Y. M. (2022). Deep learning models for predicting covid-19 using chest x-ray images. Musa, T. H., Kawuki, J., & Musa, H. H. (2022). Bibliometric analysis of the african health sciences’ research indexed in web of science and scopus. African Health Sciences, 22(2), 704–716.

33. Nakasi, R., Tusubira, J. F., Zawedde, A., Mansourian, A., & Mwebaze, E. (2020). A web-based intelligence platform for diagnosis of malaria in thick blood smear images: A case for a developing country. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 984–985.

34. Nweke, H. F., Teh, Y. W., Al-Garadi, M. A., & Alo, U. R. (2018). Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. Expert Systems with Applications, 105, 233–261.

35. Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447–453.

36. Okolo, C. T., Aruleba, K., & Obaido, G. (2023). Responsible ai in africa—challenges and opportunities. Responsible AI in Africa: Challenges and Opportunities, 1, 35–64.

37. Omotayo, A. H., Gamal, M., Ehab, E., Dovonon, G., Akinjobi, Z., Lukman, I., Turki, H., Abdien, M., Tondji, I., Oppong, A., Pimi, Y., Gamal, K., & Siam, M. (2023). Towards a better understanding of the computer vision research community in africa. In Proceedings of the 3rd ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization.

38. Potapov, P. V., Turubanova, S. A., Hansen, M. C., Adusei, B., Broich, M., Altstatt, A., Mane, L., & Justice, C. O. (2012). Quantifying forest cover loss in democratic republic of the congo, 2000–2010, with landsat etm+ data. Remote Sensing of Environment, 122, 106–116.

39. Pouris, A., & Ho, Y.-S. (2014). Research emphasis and collaboration in africa. Scientometrics, 98, 2169–2184.

40. Roshanitabrizi, P., Roth, H. R., Tompsett, A., Paulli, A. R., Brown, K., Rwebembera, J., Okello, E., Beaton, A., Sable, C., & Linguraru, M. G. (2022). Ensembled prediction of rheumatic heart disease from ungated doppler echocardiography acquired in low-resource settings. In Proceedings of the Medical Image Computing and Computer Assisted Intervention, pp. 602–612. Springer.

41. Sefala, R., Gebru, T., Moorosi, N., & Klein, R. (2021). Constructing a visual dataset to study the effects of spatial apartheid in south africa. In Proceedings of the Conference on Neural Information Processing Systems Datasets and Benchmarks Track.

42. Shirley, R., Duncan, K., Campos Varillas, M., Hurley, P., Ma lek, K., Roehlly, Y., Smith, M., Aussel, H., Bakx, T., Buat, V., et al. (2021). Help: the herschel extragalactic legacy project. Monthly Notices of the Royal Astronomical Society, 507(1), 129–155.

43. Sirko, W., Kashubin, S., Ritter, M., Annkah, A., Bouchareb, Y. S. E., Dauphin, Y., Keysers, D., Neumann, M., Cisse, M., & Quinn, J. (2021). Continental-scale building detection from high resolution satellite imagery.

44. Sooryamoorthy, R., Gupta, R., Gupta, B., et al. (2021). Science in africa: contemporary trends in research. Journal of Scientometric Research, 10(3), 366–372.

45. Sweeney, L. (2013). Discrimination in online ad delivery. Communications of the ACM, 56(5), 44–54.

46. Tlili, A., Altinay, F., Huang, R., Altinay, Z., Olivier, J., Mishra, S., Jemni, M., & Burgos, D. (2022). Are we there yet? a systematic literature review of open educational resources in africa: A combined content and bibliometric analysis. Plos one, 17(1), e0262615.

47. Turki, H., Sekkal, H., Pouris, A., Ifeanyichukwu, F.-A. M., Namayega, C., Lrhoul, H., Taieb, M. A. H., Adedayo, S. A., Fourie, C., Currin, C. B., Asiedu, M. N., Tonja, A. L., Owodunni, A. T., Dere, A., Emezue, C. C., Muhammad, S. H., Isa, M. M., Banat, M., & Aouicha, M. B. (2023). Machine learning for healthcare: A bibliometric study of contributions from africa.

48. Van der Walt, S., Sch ̈onberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., & Yu, T. (2014). scikit-image: image processing in python. PeerJ, 2, e453.

49. Whittaker, M., Alper, M., Bennett, C. L., Hendren, S., Kaziunas, L., Mills, M., Morris, M. R., Rankin, J., Rogers, E., Salas, M., et al. (2019). Disability, bias, and ai. AI Now Institute, 1, 8.

50. Wondrade, N., Dick, Ø. B., & Tveite, H. (2014). Gis based mapping of land cover changes utilizing multi-temporal remotely sensed image data in lake hawassa watershed, ethiopia. Environmental monitoring and assessment, 186, 1765–1780.

51. Yuh, Y. G., Dongmo, Z. N., N’Goran, P. K., Ekodeck, H., Mengamenya, A., Kuehl, H., Sop, T., Tracz, W., Agunbiade, M., & Elvis, T. (2019). Effects of land cover change on great apes distribution at the lob ́ek ́e national park and its surrounding forest management units, south-east cameroon. a 13 year time series analysis. Scientific Reports, 9(1), 1445.r


How to Cite

ADVANCING AFRICAN COMPUTER VISION: PROGRESS, CHALLENGES, AND PATHWAYS FOR GROWTH. (2024). European Journal of Emerging Artificial Intelligence, 1(01), 1-16. https://www.parthenonfrontiers.com/index.php/ejeai/article/view/45

Related articles

Share Link