ejertiotei Open Access Journal

European Journal of Emerging Real-Time IoT and Edge Infrastructures

eISSN: Applied
Publication Frequency : 2 Issues per year.

  • Peer Reviewed & International Journal
Table of Content
Issues (Year-wise)
Loading…
✓ Article Published

Open Access iconOpen Access

ARTICLE

ACCELERATING URBAN INTELLIGENCE: A FRAMEWORK FOR REAL-TIME EDGE ANALYTICS IN IOT-DRIVEN SMART CITIES

1 Department of Communication, University of Maine, Orono, ME, USA
2 Department of Political Science, University of New Hampshire, Durham, NH, USA

Citations: Loading…
ABSTRACT VIEWS: 28   |   FILE VIEWS: 8   |   PDF: 8   HTML: 0   OTHER: 0   |   TOTAL: 36
Views + Downloads (Last 90 days)
Cumulative % included

Abstract

The proliferation of Internet of Things (IoT) devices within urban environments has heralded the era of the smart city, promising enhanced efficiency, sustainability, and quality of life. However, the unprecedented volume of data generated by these devices poses significant challenges to traditional cloud-centric data processing models, primarily concerning latency, bandwidth, and cost. This paper addresses these challenges by exploring the paradigm of edge computing, which shifts computation closer to the source of data. We conduct a systematic review of existing literature to synthesize a comprehensive framework for real-time edge analytics in IoT networks. The proposed framework integrates strategies for lightweight data processing, resource management, and security to optimize decision-making across various smart city applications. Our analysis reveals that an edge-centric approach can significantly reduce latency and conserve network bandwidth, thereby enabling time-sensitive applications such as intelligent traffic management, autonomous vehicle coordination, and real-time environmental monitoring. Furthermore, we conduct an in-depth investigation into the critical challenges inherent in this paradigm, including the severe resource constraints on edge devices, complex security and privacy vulnerabilities, persistent interoperability issues, and the socio-ethical implications of pervasive urban sensing. The discussion synthesizes these findings, highlighting the profound implications for urban planners, technologists, and researchers. We conclude that the strategic implementation of real-time edge analytics is not merely a technical upgrade but a foundational enabler for creating truly responsive, efficient, and intelligent urban ecosystems that are secure, ethical, and sustainable.


Keywords

Edge Computing, Internet of Things (IoT), Smart Cities, Real-Time Analytics

References

1. Alavi, A. H., Jiao, P., Buttlar, W. G., & Lajnef, N. (2018). Internet of Things-enabled smart cities: State-of-the-art and future trends. Measurement, 129, 589-606.

2. Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the Internet of Things. In Proceedings of the first edition of the MCC workshop on Mobile cloud computing (pp. 13-16).

3. Bryman, A. (2016). Social research methods. Oxford University Press.

4. Chen, M., & Lin, X. (2019). Efficient resource management for edge computing in smart cities. Journal of Urban Computing, 11(3), 217-228.

5. Chen, W., Zhang, Y., Liu, X., & Gao, J. (2020). Edge AI in environmental monitoring: Real-time analytics for pollution control. Environmental Monitoring Journal, 45(2), 113–126.

6. Cheng, Y., Wang, D., Zhou, P., & Zhang, T. (2017). A survey of model compression and acceleration for deep neural networks. arXiv preprint arXiv:1710.09282.

7. Creswell, J. W., & Plano Clark, V. L. (2017). Designing and conducting mixed methods research. Sage publications.

8. Cugurullo, F. (2018). The origin of the smart city imaginary: from the dawn of modernity to the eclipse of reason. In The Routledge Companion to Urban imaginaries (pp. 113-123). Routledge.

9. Dastjerdi, A. V., & Buyya, R. (2016). Edge computing: A survey and research directions. Springer.

10. Dwork, C., & Roth, A. (2014). The algorithmic foundations of differential privacy. Foundations and Trends® in Theoretical Computer Science, 9(3-4), 211-407.

11. Florida, L. (2018). Soft ethics and the governance of the digital. Philosophy & Technology, 31(1), 1–8.

12. Gao, J., Zhang, X., & Wu, S. (2022). Cost-benefit analysis of edge analytics in smart cities: A comprehensive review. IEEE Transactions on Network and Service Management, 19(2), 231–244.

13. Ghosh, A., Duttagupta, D., & Singh, A. (2020). A survey on real-time edge analytics for smart city applications. IEEE Access, 8, 63594–63614.

14. Gharaibeh, A., Salahuddin, M. A., Hussini, S. J., Khreishah, A., Khalil, I., Guizani, M., & Al-Fuqaha, A. (2017). Smart cities: A survey on data management, security, and enabling technologies. IEEE Communications Surveys & Tutorials, 19(4), 2456-2501.

15. González, H., Perez, R., & Fernandez, A. (2019). Synchronization challenges in edge computing for real-time smart city applications. IEEE Internet of Things Journal, 6(4), 6354-6363.

16. Gou, Y., Zhang, H., & Liu, Q. (2019). Scalable and flexible edge analytics for IoT applications. Wiley.

17. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660.

18. Huang, D., Zhu, X., Wu, C., & Zeng, L. (2017). A survey on secure data processing for edge computing: Challenges and solutions. IEEE Communications Magazine, 56(2), 62-68.

19. Jiang, Y., Li, Y., & Li, L. (2020). Advanced data analytics algorithms for edge computing: A survey. ACM Computing Surveys, 53(1), 1-35.

20. Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., ... & Zhao, S. (2021). Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 14(1-2), 1-210.

21. Khan, M., Ullah, Z., & Sadiq, A. (2021). Lightweight algorithms for resource-constrained edge devices in IoT. IEEE Access, 9, 53476-53485.

22. Kim, H., Lee, S., & Choi, J. (2019). Predictive models for pollution control in smart cities: Edge analytics approach. Journal of Smart City Applications, 12(1), 45–58.

23. Kumar, R., Singh, J., & Sinha, S. (2021). User experience and human factors in edge analytics: A review. Journal of Computing and Security, 96, 101905.

24. Lee, S., Kim, J., & Park, S. (2019). Real-world implementations and pilot projects of edge analytics in smart cities. Smart Cities, 2(3), 134-150.

25. Li, M., & Wang, J. (2019). Traffic flow prediction in smart cities: An edge computing perspective. IEEE Transactions on Intelligent Transportation Systems, 20(3), 1125-1137.

26. Li, X., Zhang, Y., & Wang, J. (2019). Real-time data processing for autonomous vehicles in smart cities: The role of edge analytics. IEEE Transactions on Intelligent Transportation Systems, 20(4), 1419–1430.

27. Liu, J., Yu, F. R., Li, Y., Ji, H., & Leung, V. C. (2019). Blockchain and machine learning for communications and networking systems. IEEE Communications Surveys & Tutorials, 22(2), 1392-1431.

28. Liu, T., Zhang, L., & Li, H. (2022). Energy-efficient edge computing strategies for smart cities. IEEE Transactions on Sustainable Computing, 7(1), 44–55.

29. Liu, Y., & Wang, H. (2021). Performance limitations in edge computing for IoT networks. IEEE Transactions on Cloud Computing, 9(2), 310-319.

30. Liu, Y., Sun, X., & Yang, Z. (2018). Integrating renewable energy sources in smart grids: The role of edge computing. IEEE Access, 6, 65350-65359.

31. Mao, Y., You, C., Zhang, J., & Huang, K. (2017). A survey on mobile edge computing: The communication perspective. IEEE Communications Surveys & Tutorials, 19(4), 2322–2358.

32. Mishra, S., Jain, S., & Singhal, M. (2019). Real-time IoT frameworks: An evaluation and comparison. Internet of Things Journal, 6(5), 8152–8166.

33. Premsankar, G., Di Francesco, M., & Taleb, T. (2018). Edge computing for the Internet of Things: A case study. IEEE Internet of Things Journal, 5(2), 1275-1284.

34. Roman, R., Lopez, J., & Mambo, M. (2018). Mobile edge computing, Fog et al.: A survey and analysis of security threats and challenges. Future Generation Computer Systems, 78, 680-698.

35. Santos, R., Nunes, B., & Vieira, L. (2020). Interoperability challenges in IoT: Case study on edge computing integration. Journal of Network and Computer Applications, 156, 102563.

36. Satyanarayanan, M. (2017). The emergence of edge computing. Computer, 50(1), 30-39.

37. Shi, W., & Dustdar, S. (2016). The promise of edge computing. Computer, 49(5), 78-81.

38. Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637–646.

39. Taneja, M., & Davy, A. (2017). Resource-aware placement of IoT application modules in Fog-Cloud Computing Paradigm. Future Generation Computer Systems, 78, 233-246.

40. Wang, P., Chen, T., & Liu, Y. (2018). Enhancing IoT security with edge-based privacy-preserving analytics. IEEE Transactions on Information Forensics and Security, 13(11), 2919-2931.

41. Wang, P., Chen, T., & Liu, Y. (2020). Enhancing IoT security with edge-based privacy-preserving analytics. IEEE Transactions on Information Forensics and Security, 13(11), 2919-2931.

42. Wang, S., Liang, F., Guo, Y., Liu, X., Xie, Y., & Wang, L. (2020). Privacy-preserving federated learning on the internet of medical things: A blockchain-based approach. Future Generation Computer Systems, 108, 289-300.

43. Wang, S., Zhang, Y., & Guo, Y. (2019). Comparative analysis of edge and cloud analytics for smart city applications. IEEE Transactions on Cloud Computing, 7(2), 376–389.

44. Wu, J., Yang, Y., & Zhang, J. (2021). Interoperability challenges in edge analytics for IoT networks. ACM Transactions on Internet Technology, 21(2), 12–29.

45. Xu, L. D., He, W., & Li, S. (2018). Internet of Things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233–2243.

46. Xu, Y., Dong, J., & Huang, Z. (2020). Latency and bandwidth optimization in edge computing for IoT applications. IEEE Access, 8, 45576-45585.

47. Yang, J., Xiao, L., & Ma, R. (2021). Smart street lighting system with edge analytics for energy optimization. IEEE Transactions on Sustainable Energy, 12(4), 1897-1906.

48. Yang, Y., Zhao, H., & Liu, Y. (2018). Security and privacy issues in edge computing: A survey. Future Generation Computer Systems, 82, 559–568.

49. Zhang, H., Xu, M., & Li, D. (2020). Network reliability and edge computing in IoT systems: An empirical study. IEEE Transactions on Network and Service Management, 17(4), 2090-2103.

50. Zhang, K., Ni, J., Yang, K., Liang, X., Ren, J., & Shen, X. S. (2019). Security and privacy in smart city applications: Challenges and solutions. IEEE Communications Magazine, 55(1), 122-129.

51. Zhang, M., Yang, S., & Li, Z. (2018). Optimized resource utilization with edge analytics in IoT networks. IEEE Transactions on Network and Service Management, 15(3), 934–946.

52. Zhang, X., Zhang, Z., & Zhang, W. (2020). Integrating 5G and AI with edge analytics for smart cities. IEEE Communications Magazine, 58(11), 60–66.

53. Zhao, L., Wu, H., & Liu, M. (2020). Real-time traffic management using edge analytics in smart cities. Journal of Urban Computing, 9(3), 198–210.

54. Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., & Zhang, J. (2019). Edge intelligence: Paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8), 1738-1762.

55. Zhu, Q., Li, H., & Chen, W. (2021). Balancing accuracy and latency in edge analytics for real-time applications. IEEE Transactions on Cloud Computing, 9(1), 198-210.


How to Cite

ACCELERATING URBAN INTELLIGENCE: A FRAMEWORK FOR REAL-TIME EDGE ANALYTICS IN IOT-DRIVEN SMART CITIES. (2024). European Journal of Emerging Real-Time IoT and Edge Infrastructures, 1(01), 22-29. https://www.parthenonfrontiers.com/index.php/ejertiotei/article/view/87

Related articles

Share Link